파트넘버.co.kr ispGDX160VA-5B272I 데이터시트 PDF


ispGDX160VA-5B272I 반도체 회로 부품 판매점

In-System Programmable 3.3V Generic Digital CrosspointTM



Lattice Semiconductor 로고
Lattice Semiconductor
ispGDX160VA-5B272I 데이터시트, 핀배열, 회로
ispGDXTM160V/VA
In-System Programmable
3.3V Generic Digital CrosspointTM
Features
Functional Block Diagram
• IN-SYSTEM PROGRAMMABLE GENERIC DIGITAL
CROSSPOINT FAMILY
— Advanced Architecture Addresses Programmable
PCB Interconnect, Bus Interface Integration and
Jumper/Switch Replacement
— “Any Input to Any Output” Routing
— Fixed HIGH or LOW Output Option for Jumper/DIP
Switch Emulation
— Space-Saving PQFP and BGA Packaging
— Dedicated IEEE 1149.1-Compliant Boundary Scan
Test
• HIGH PERFORMANCE E2CMOS® TECHNOLOGY
I/O Pins D
ISP
Control
I/O
Cells
Global Routing
Pool
(GRP)
I/O
Cells
— 3.3V Core Power Supply
— 3.5ns Input-to-Output/3.5ns Clock-to-Output Delay*
— 250MHz Maximum Clock Frequency*
— TTL/3.3V/2.5V Compatible Input Thresholds and
Output Levels (Individually Programmable)*
— Low-Power: 16.5mA Quiescent Icc*
— 24mA IOL Drive with Programmable Slew Rate
Control Option
— PCI Compatible Drive Capability*
— Schmitt Trigger Inputs for Noise Immunity
— Electrically Erasable and Reprogrammable
— Non-Volatile E2CMOS Technology
Boundary
Scan
Control
Description
I/O Pins B
• ispGDXV™ OFFERS THE FOLLOWING ADVANTAGES
— 3.3V In-System Programmable Using Boundary Scan
Test Access Port (TAP)
— Change Interconnects in Seconds
The ispGDXV/VA architecture provides a family of fast,
flexible programmable devices to address a variety of
system-level digital signal routing and interface require-
ments including:
• FLEXIBLE ARCHITECTURE
— Combinatorial/Latched/Registered Inputs or Outputs
— Individual I/O Tri-state Control with Polarity Control
— Dedicated Clock/Clock Enable Input Pins (four) or
Programmable Clocks/Clock Enables from I/O Pins
(40)
— Single Level 4:1 Dynamic Path Selection (Tpd=3.5ns)
— Programmable Wide-MUX Cascade Feature
Supports up to 16:1 MUX
— Programmable Pull-ups, Bus Hold Latch and Open
Drain on I/O Pins
— Outputs Tri-state During Power-up (“Live Insertion”
Friendly)
• DESIGN SUPPORT THROUGH LATTICE’S ispGDX
DEVELOPMENT SOFTWARE
— MS Windows or NT / PC-Based or Sun O/S
— Easy Text-Based Design Entry
— Automatic Signal Routing
— Program up to 100 ISP Devices Concurrently
— Simulator Netlist Generation for Easy Board-Level
Simulation
• Multi-Port Multiprocessor Interfaces
• Wide Data and Address Bus Multiplexing
(e.g. 16:1 High-Speed Bus MUX)
• Programmable Control Signal Routing
(e.g. Interrupts, DMAREQs, etc.)
• Board-Level PCB Signal Routing for Prototyping or
Programmable Bus Interfaces
The devices feature fast operation, with input-to-output
signal delays (Tpd) of 3.5ns and clock-to-output delays of
3.5ns.
The architecture of the devices consists of a series of
programmable I/O cells interconnected by a Global Rout-
ing Pool (GRP). All I/O pin inputs enter the GRP directly
or are registered or latched so they can be routed to the
required I/O outputs. I/O pin inputs are defined as four
sets (A,B,C,D) which have access to the four MUX inputs
* “VA” Version Only
Copyright © 2000 Lattice Semiconductor Corporation. All brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein
are subject to change without notice.
LATTICE SEMICONDUCTOR CORP., 5555 Northeast Moore Ct., Hillsboro, Oregon 97124, U.S.A.
Tel. (503) 268-8000; 1-800-LATTICE; FAX (503) 268-8556; http://www.latticesemi.com
July 2000
gdx160va_04
1


ispGDX160VA-5B272I 데이터시트, 핀배열, 회로
Specifications ispGDX160V/VA
Description (Continued)
found in each I/O cell. Each output has individual, pro-
grammable I/O tri-state control (OE), output latch clock
(CLK), clock enable (CLKEN), and two multiplexer con-
trol (MUX0 and MUX1) inputs. Polarity for these signals
is programmable for each I/O cell. The MUX0 and MUX1
inputs control a fast 4:1 MUX, allowing dynamic selection
of up to four signal sources for a given output. A wider
16:1 MUX can be implemented with the MUX expander
feature of each I/O and a propagation delay increase of
2.0ns. OE, CLK, CLKEN, and MUX0 and MUX1 inputs
can be driven directly from selected sets of I/O pins.
Optional dedicated clock input pins give minimum clock-
to-output delays. CLK and CLKEN share the same set of
I/O pins. CLKEN disables the register clock when
CLKEN = 0.
In addition, there are no pin-to-pin routing constraints for
1:1 or 1:n signal routing. That is, any I/O pin configured
as an input can drive one or more I/O pins configured as
outputs.
The device pins also have the ability to set outputs to
fixed HIGH or LOW logic levels (Jumper or DIP Switch
mode). Device outputs are specified for 24mA sink and
12mA source current (at JEDEC LVTTL levels) and can
be tied together in parallel for greater drive. On the
ispGDXVA, each I/O pin is individually programmable for
3.3V or 2.5V output levels as described later. Program-
mable output slew rate control can be defined
independently for each I/O pin to reduce overall ground
bounce and switching noise.
Through in-system programming, connections between
I/O pins and architectural features (latched or registered
inputs or outputs, output enable control, etc.) can be
defined. In keeping with its data path application focus,
the ispGDXV devices contain no programmable logic
arrays. All input pins include Schmitt trigger buffers for
noise immunity. These connections are programmed
into the device using non-volatile E2CMOS technology.
Non-volatile technology means the device configuration
is saved even when the power is removed from the
device.
All I/O pins are equipped with IEEE1149.1-compliant
Boundary Scan Test circuitry for enhanced testability. In
addition, in-system programming is supported through
the Test Access Port via a special set of private com-
mands.
The ispGDXV I/Os are designed to withstand live inser-
tionsystem environments. The I/O buffers are disabled
during power-up and power-down cycles. When design-
ing for live insertion,absolute maximum rating conditions
for the Vcc and I/O pins must still be met.
Table 1. ispGDXV Family Members
ispGDXV/VA Device
ispGDX80VA ispGDX160V/VA ispGDX240VA
I/O Pins
80 160 240
I/O-OE Inputs*
20 40 60
I/O-CLK / CLKEN Inputs*
20
40 60
I/O-MUXsel1 Inputs*
20 40 60
I/O-MUXsel2 Inputs*
20 40 60
Dedicated Clock Pins**
2
44
EPEN
1 11
TOE
1 11
BSCAN Interface
4 44
RESET
1 11
Pin Count/Package
100-Pin TQFP
208-Pin PQFP 388-Ball fpBGA
208-Ball fpBGA
272-Ball BGA
* The CLK/CLK_EN, OE, MUX0 and MUX1 terminals on each I/O cell can each be assigned to
25% of the I/Os.
** Global clock pins Y0, Y1, Y2 and Y3 are multiplexed with CLKEN0, CLKEN1, CLKEN2 and
CLKEN3 respectively in all devices.
2




PDF 파일 내의 페이지 : 총 30 페이지

제조업체: Lattice Semiconductor

( lattice )

ispGDX160VA-5B272I data

데이터시트 다운로드
:

[ ispGDX160VA-5B272I.PDF ]

[ ispGDX160VA-5B272I 다른 제조사 검색 ]




국내 전력반도체 판매점


상호 : 아이지 인터내셔날

전화번호 : 051-319-2877

[ 홈페이지 ]

IGBT, TR 모듈, SCR, 다이오드모듈, 각종 전력 휴즈

( IYXS, Powerex, Toshiba, Fuji, Bussmann, Eaton )

전력반도체 문의 : 010-3582-2743



일반적인 전자부품 판매점


디바이스마트

IC114

엘레파츠

ICbanQ

Mouser Electronics

DigiKey Electronics

Element14


관련 데이터시트


ispGDX160VA-5B272

In-System Programmable 3.3V Generic Digital CrosspointTM - Lattice Semiconductor



ispGDX160VA-5B272I

In-System Programmable 3.3V Generic Digital CrosspointTM - Lattice Semiconductor