|
![]() Panasonic Semiconductor |
![]() INTEGRATED CIRCUITS
DATA SHEET
74LVC2G00
Dual 2-input NAND gate
Product specification
Supersedes data of 2003 Nov 17
2004 Sep 23
![]() Philips Semiconductors
Dual 2-input NAND gate
Product specification
74LVC2G00
FEATURES
• Wide supply voltage range from 1.65 V to 5.5 V
• 5 V tolerant outputs for interfacing with 5 V logic
• High noise immunity
• Complies with JEDEC standard:
– JESD8-7 (1.65 V to 1.95 V)
– JESD8-5 (2.3 V to 2.7 V)
– JESD8B/JESD36 (2.7 V to 3.6 V).
• ±24 mA output drive (VCC = 3.0 V)
• CMOS low power consumption
• Latch-up performance exceeds 250 mA
• Direct interface with TTL levels
• Inputs accept voltages up to 5 V
• Multiple package options
• ESD protection:
– HBM EIA/JESD22-A114-B exceeds 2000 V
– MM EIA/JESD22-A115-A exceeds 200 V.
• Specified from −40 °C to +85 °C and −40 °C to +125 °C.
DESCRIPTION
The 74LVC2G00 is a high-performance, low-power,
low-voltage, Si-gate CMOS device and superior to most
advanced CMOS compatible TTL families.
Inputs can be driven from either 3.3 V or 5 V devices.
These feature allows the use of these devices as
translators in a mixed 3.3 V and 5 V environment.
This device is fully specified for partial power-down
applications using Ioff. The Ioff circuitry disables the output,
preventing the damaging backflow current through the
device when it is powered down.
The 74LVC2G00 provides the 2-input NAND gate.
QUICK REFERENCE DATA
GND = 0 V; Tamb = 25 °C.
SYMBOL
tPHL/tPLH
CI
CPD
PARAMETER
CONDITIONS
propagation delay
inputs nA, nB to output nY
input capacitance
VCC = 1.8 V; CL = 30 pF; RL = 1 kΩ
VCC = 2.5 V; CL = 30 pF; RL = 500 Ω
VCC = 2.7 V; CL = 50 pF; RL = 500 Ω
VCC = 3.3 V; CL = 50 pF; RL = 500 Ω
VCC = 5.0 V; CL = 50 pF; RL = 500 Ω
power dissipation capacitance per gate VCC = 3.3 V; notes 1 and 2
TYPICAL UNIT
3.5 ns
2.3 ns
3.0 ns
2.2 ns
1.8 ns
2.5 pF
14 pF
Notes
1. CPD is used to determine the dynamic power dissipation (PD in µW).
PD = CPD × VCC2 × fi × N + Σ(CL × VCC2 × fo) where:
fi = input frequency in MHz;
fo = output frequency in MHz;
CL = output load capacitance in pF;
VCC = supply voltage in Volts;
N = total load switching outputs;
Σ(CL × VCC2 × fo) = sum of the outputs.
2. The condition is VI = GND to VCC.
2004 Sep 23
2
|